Nitric oxide elicits functional MMP-13 protein-tyrosine nitration during wound repair.

نویسندگان

  • Tania R Lizarbe
  • Concepción García-Rama
  • Carlos Tarín
  • Marta Saura
  • Enrique Calvo
  • Juan Antonio López
  • Carlos López-Otín
  • Alicia R Folgueras
  • Santiago Lamas
  • Carlos Zaragoza
چکیده

Nitric oxide (NO) plays a critical role in wound healing, in part by promoting angiogenesis. However, the precise repair pathways affected by NO are not well defined. We now show that NO regulates matrix metalloproteinase-13 (MMP-13) release during wound repair. We find that normally MMP-13 is kept inside endothelial cells by an association with caveolin-1. However, nitration of MMP-13 on tyrosine residue Y338 causes it to dissociate from caveolin-1 and be released from endothelial cells. We next explored the functional significance of MMP-13 nitration in vivo. Skin injury increases nitration of MMP-13 in mice. Skin wounds in inducible nitric oxide synthase knockout mice release less MMP-13 and heal more slowly than skin wounds in wild-type mice. Conversely, skin wounds in caveolin-1 knockout mice have increased NO production, increased MMP-13 nitration, and accelerated wound healing. Collectively, our data reveal a new pathway through which NO modulates wound repair: nitration of MMP-13 promotes its release from endothelial cells, where it accelerates angiogenesis and wound healing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Susceptibility to ozone-induced acute lung injury in iNOS-deficient mice.

Mice deficient in inducible nitric oxide synthase (iNOS; C57Bl/6Ai-[KO]NOS2 N5) or wild-type C57Bl/6 mice were exposed to 1 part/million of ozone 8 h/night or to filtered air for three consecutive nights. Endpoints measured included lavagable total protein, macrophage inflammatory protein (MIP)-2, matrix metalloproteinase (MMP)-9, cell content, and tyrosine nitration of whole lung proteins. Ozo...

متن کامل

TNF-alpha potentiates protein-tyrosine nitration through activation of NADPH oxidase and eNOS localized in membrane rafts and caveolae of bovine aortic endothelial cells.

A major source of reactive oxygen species (ROS) in endothelial cells is the NADPH oxidase enzyme complex. The selective distributions of any enzyme within cells have important implications in regulating enzyme effectiveness through facilitation of access to local substrates and/or product targets. Because membrane rafts provide a spatially preferable environment for a variety of enzyme systems,...

متن کامل

Tyrosine nitration in human spermatozoa: a physiological function of peroxynitrite, the reaction product of nitric oxide and superoxide.

Tyrosine nitration is a widely used marker of peroxynitrite (ONOO-) produced from the reaction of nitric oxide (NO.) with superoxide (O2(.-)). Since human spermatozoa are able to produce both NO. and O2(.-) during capacitation in vitro, we investigated whether spontaneous tyrosine nitration of proteins occurs in human spermatozoa and evaluated the physiological effects of peroxynitrite on sperm...

متن کامل

Protein tyrosine nitration in plants: Present knowledge, computational prediction and future perspectives.

Nitric oxide (NO) and related molecules (reactive nitrogen species) regulate diverse physiological processes mainly through posttranslational modifications such as protein tyrosine nitration (PTN). PTN is a covalent and specific modification of tyrosine (Tyr) residues resulting in altered protein structure and function. In the last decade, great efforts have been made to reveal candidate protei...

متن کامل

TNF- potentiates protein-tyrosine nitration through activation of NADPH oxidase and eNOS localized in membrane rafts and caveolae of bovine aortic endothelial cells

Yang B, Rizzo V. TNFpotentiates protein-tyrosine nitration through activation of NADPH oxidase and eNOS localized in membrane rafts and caveolae of bovine aortic endothelial cells. Am J Physiol Heart Circ Physiol 292: H954–H962, 2007. First published October 6, 2006; doi:10.1152/ajpheart.00758.2006.—A major source of reactive oxygen species (ROS) in endothelial cells is the NADPH oxidase enzyme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 22 9  شماره 

صفحات  -

تاریخ انتشار 2008